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Coulson's contour integration method has been applied to calculate the charge and bond order 
matrices and total energies of conjugated systems composed of fragments whose Htickel secular 
equations have been solved. Integral formulas have been derived for the calculation of these quantities 
for two coupled conjugated systems and for linear polymers. A rapid method for the numerical evalua- 
tion of the integral formulas is presented and applied to a linear finite polyene. 

Coulson [13 introduced in 1940 an integration method with which molecular 
orbital calculations can be performed without direct reference to the eigenvalues 
and eigenvectors of the secular problem. Recently, Linderberg [2] showed that 
this technique is useful in conjunction with computers. The purpose of this 
paper is to show that the contour integration method is particularly useful in 
calculating the properties of large molecules composed of fragments whose Hiickel 
secular equations have been solved. 

The results of Coulson and Linderberg are presented here in a somewhat 
different notation. For simplicity, overlap is not included and the coefficients of 
the atomic orbitals are assumed to be real. The calculations are performed in 
terms of a Htickel bond matrix B obtained from the normal Htickel matrix H 
by the transformation 

1 
B = flog (H - c%I) (1) 

where ~o and fig stand for the standard resonance parameter for the carbon- 
carbon bond and the Coulomb parameter of carbon, respectively. The equations 
of Coulson are converted into two general integral formulas. 

Theorem 1. The charge and bond order matrix P is given by the formula 

P =  1 ~ ( z I -  B)- l  dz (2) 
7~ l o c c  

where "occ" means that the complex integral is taken over the contour enclosing the 
eigenvalues of B corresponding to the occupied orbitals. 

The integrand is expanded as a sum of dyads 

1 
(zI -- B) -1 = ~ cjc T (3) 

j z - e j  
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where e s and cj are, respectively, the eigenvalues and eigenvectors of B. Appli- 
cation of the Cauchy integral formula gives 

1 l ~ c j e f  g dz 1 
2hi  oct ~ ( z I -  B ) - l  d z =  ~ ~ c z -  ~s - Z cacf 2 P" 

Theorem 2. 7he total n-electron energy in units of  fl o and assuming that c~ o = O 
is given by the formula 

1 
E = - -  ~ z t r ( z I - B ) - I d z .  (4) 

~i oct 

This theorem is proved by dyadic expansion like the preceding. 

Two Systems Coupled by One Bond 

Let B 1 and B 2 be the Hiickel bond matrices of two conjugated systems S l 
and $2 containing n and m atoms, respectively. The bond matrix of the coupled 
system is 

Two new matrices are now defined by 

G 1 : ( z I -  B1) -1 

G 2 = (zI  - B2) -1 . 

It is easily shown that 

--IV~ /--1 G =  ( GZ1 = ( ( I - G 1 K G 2 K T ) - t G 1  G 1 K ( I - G e K r G 1 K ) - I G 2 t  
~ - K  r G; l J  G2KrGI K) -1 G2 / " \G2Kr( I  - GIKG2Kr)  - 1 Gj (I- 

It is assumed that a tom p in the system $1 is bonded to a tom q in the system S 2. 
Let the resonance parameter  for the bond be k. The elements of K are then 

Ki j  .= (~ip~jq]£. 

With this matrix we obtain 

(I -- G 1 K G 2 Kr)0 = 3is - (61)iv (G2)qq a jr k2" 

This matrix is inverted by partitioning [3] : 

k2 (61)ip(G2)qq ajp 
((I -- G1KG2Kr)-I ) i  s = 6is + 1 - k2(Gl)pp(G2)qq " 

Hence 

k 2 (G 1)iv(G1)vj(Gz)qq 
((I - G1KG2Kr) -1 G1)~s = (G1)~S + 1 - kZ(G1)vp(G2)qq (5) 
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Analogously we find that 

k 2 ( G 2)iq( G 2 )qj( G ~ )pp 
((I - G 2 K T G 1 K )  -1 G2)ij : (G2)ij + 1 -- k2(G1)pp(G2)qq 

and 
k(G2)~q(GOpj 

(G2KT(I - G1KG2KT)-I  G1)U = 1 - -  k 2 ( G 1 ) p p ( G 2 ) q q  " 

(6) 

(7) 

Application of Theorem 1 gives the differences in bond orders and electron 
densities between coupled and uncoupled systems. For instance, for the atoms 
of the system S 1 we obtain 

1 k2(G1)ip(G1)Pj(Gz)qq dz.  
(AP1)iJ= ~ o!~ 1 -  k2(GOpp(G2)qq (8) 

The total n-energy difference is given by 

1 k2z 
A E = --n, o!c 1 -- k2(GOpp(a2)aq [(a2)qq(a2)pP + (G1)pp(G2)°q] dz .  (9) 

Polymers 

Recurrence relations for obtaining the elements of the matrix G for polymers 
are easily derived from Eqs. (5-7). In the case of identical monomer units, explicit 
formulas may be derived. Assuming that $1 represents the monomer unit and $2 
the polymer, we derive from Eq. (5) 

2 2 (n) 
t ~  ,~(n+l) k (G1)qp(G2)qq (10) 
~"2Jqcl = (G1)qq + 1 2 ~) • 

- -  k (G1)pp(G2)qq 

Here the same index q is used to label analogous positions in the monomer and 
n- and n + 1-mers. Using the notation 

we have 

where 

G = 1 - k 2 ( a l ) . ( 6 2 ) ~  ~ 

b 
Q n + l  = a ~ -  - -  (11) 

O. 

2 2 a = 1 -- k2(G1)pp(G1)qq + k (G1)qp 

b 2 2 = - k (G1)~p. 

This formula shows that Qn is given by a terminating continuous fraction 

b b b 
Q. = a + (12) 

a+  a+  Q1 
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Eq. (9) is now brought into a more amenable form. Performing integration by 
parts, we obtain 

1 
A E -  ni  ~ ln(1-k2(G1)pp(G2)qq)dz"  (13) 

oct  

The energy change that occurs when one monomer unit is joined to an n -  1-met 
is obtained from 

1 
A N  ( " ) -  ~ l n Q , _ l d z .  (14) 

~ci oct 

Hence the total n-energy of a polymer composed of n identical monomer units 
is obtained from 

~, 1 . - 1  
E~")=nE(1) + A E ( m ) = n E  0 ) -  - -  ~ In l-[ Qmdz .  (15) 

m = 2  n l  occ r n = l  

From formula (11), it follows that 

e (m n - l )  

In these equations 

R ~ - I ) = Q n _ I Q ~ _ 2 = a l Q  . 2 + b  1, 

R(2 n - l ) =  Q ~ - I Q ~ -  2 Q , - 3  = ( a f  + b l ) Q , - 3  + a lb l  , 

t l - - i  

[[ Qi = amO.-m 1+bin. 
n - m - 1  

a l = a ,  b a = b ,  

a m = a • a m_ t -[- bin-1 , 

b m = b .  % _  1 . 

These simultaneous difference equations are transformed into a linear homoge- 
neous second-order difference equation 

am+ 2 - a . a m +  1 - b . a  m = 0 .  (16) 

The general solution of this equation is 

am = ~rT + flr'~ 

where r~ and r2 are solutions of the characteristic equation 

r2 - a r -  b = O  

and c~ and ~ are coefficients determined by the initial conditions. In this case the 
initial conditions obviously lead to equations 

~r 1 -1- fir 2 = a ,  

~+/~=1. 
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Hence the solutions are 
r ~ + l - - r ~  +1 

r l - - r  2 

bm=b r ' ~ - ~  
r 1 - -  r 2 

Thus we get 

n - 1  n - 1  n--1 n - - 2  n - - 2  
] ~ ( n - 1 )  rl -- r2 rl -- r2 
* ' . -2  = H Qm=an-2Q, w b , - 2  = +b (17) 

m=l rl - -  r 2  ri -- r2 

Then, on the strength of the fact that Qi = q + r 2 -  rtr 2 and b = -  rlr2, the 
expression for the total energy is 

1 a; In r~(1 - r 2 ) -  r~(1 - rl) 
E (.) nE (1) dz.  2" 

'El  occ r l  - -  r 2  
(18) 

To obtain an explicit formula for the calculation of the electron densities, 
Eq. (5) is written as 

(G1)17) = (G1)u + - -  

F rom Eq. (17) we derive 

R ( .  - 1) 
n - - 2  

( G 1 ) p p  

r ~ ( 1 - r 2 ) - r ~ ( 1 - r l )  

Q , - 1 -  --,-°("- 2)3 - r ' ] - l ( 1 - r 2 ) - r " z - l ( 1 - q )  
(19) 

Hence the electron densities of the atoms of the terminal monomer  unit in an 
n-mer are obtained from 

1 2 n - 1  
(G1)jp(h - r " 2 - ~ ) ( 1 - r O ( 1 - r 2 )  dz +(Pi)}} ) (20) 

(P1)}}) = ~--i c (G1)vp[rT(1 - -  r2)-- r[(1 - q) ]  

where (P1)}}) denotes the electron density of the a tom j in the isolated monomer  
unit. 

N u m e r i c a l  C a l c u l a t i o n  o f  I n t e g r a l s  

Proper choice of the integration path is essential to simplify the calculation 
of the integrals. The contour must enclose the eigenvalues corresponding to the 
occupied orbitals of both  the coupled system and the subsystems. In the case of 
alternant hydrocarbons and most of their heteroanalogues, the "Coulson contour", 
i.e. the imaginary axis from + oo i to - ooi and the infinite semicircle to the right 
of the imaginary axis may be chosen. The integral taken over the infinite semi- 
circle has a constant value. For  example, by the substitution z = iy, Eq. (8) becomes 

1 -~ k2(G1),p(~l)~s(C2)qq (a/'l),j= Joo - 1 : ~  dy,  (21) 
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The explicit expressions for the elements of the G-matrices are obtained by dyadic 
expansion (3). 

Extremely cumbersome algebraic formulas are obtained when an attempt is 
made to separate the real and imaginary parts of the integrands. Therefore, the 
evaluation of the integrals is most easily performed using complex arithmetics 
with a computer. On substituting y = x(1 - x 2 )  -1/2, the integration limits change 
to ( -  1,1) and we obtain generally 

[ =  - -  f ( y ) d y =  r~- (1 - x2)-1/2(1 + y(x)Z)f(y(x))dx (22) 
--o0 

Chebyshev-Gauss quadrature utilizing the fact that f ( y )  is an even function of y 
gives 

1 = - -  l + t a n  2 7z f tan 7z . (23) 
m i=1 4m 4m 

This quadrature formula proved to be numerically very stable and rapidly con- 
verging. 

Applications 

The accuracy of the numerical integration was tested by applying Eq. (18) to 
the linear polyene C6oH62. The total energy in this case is obtained from the 
explicit formula I-4]: 

2 
E - 2 = 75.67619648. 

sin 7z 
122 

Energy is expressed in units of flo and assuming that So = 0. The total 7r-energy 
was also computed using Eqs. (18) and (23) taking ethylene as the monomer unit. 
Approximate values of the energy E ~3°) at a number of integration abscissas are 
shown in Table 1. We see that the convergence is fairly rapid. 

The significance of Theorems 1 and 2 lies in the fact that they provide analytical 
expressions for quantities otherwise derivable only by comparatively slow diag- 
onalization procedures. The rapidity of the numerical integration may be utilized 
in computing changes in, e.g., charges, bond orders, and total re-energies by 

Table 1. Numerical calculation of the total ~-electron energy of the linear polyene C6oH62 

rrt E (3°) 

1 75.5l 
2 76.015 
4 75.788 
8 75.699 

16 75.6785 
32 75.67624 
64 75.67619649 
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Eqs. (8) and (9) when two coupled systems are rota ted about  the connect ing bond. 
Eqs. (18) and (20) are perhaps the first explicit expressions to be proposed  for 
the calculation of  Htickel energies and charges of arbi t rary linear finite polymers. 
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